留学生课程辅导

IB数学知识点中对数函数的定义及性质总结

来源:考而思在线 阅读量:239

2022-07-06 13:54:00

一直以来,IB数学一直都是很多IB学生心目中的一大学习难点,其涉及的众多的知识点、概念以及繁重的课业量都是同学们觉得IB数学难的重要因素。为了帮助同学们学好IB数学,未来小编就为大家总结一下IB数学知识点中关于对数函数的定义和性质,快来了解一下吧。

一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。

对数的性质及定义:

一.定义:

若a^n=b(a0且a1)则n=log(a)(b)

二.基本性质:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(MN)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

三.对数函数的常用简略表达方式:

(1)log(a)(b4894/7)=7879log(a989)(b)(a为底数)

(2)lg(b)=log(10)(b)(10为底数)

(3)ln(b)=log(e)(b)(e为底数)

以上就是小编关于对数函数的部分IB数学知识点的总结,相信对同学们在这部分学习和备考中能够起到一定的帮助。如有问题,欢迎随时咨询我们的线上老师,让老师一对一为你进行课程的学习辅导吧。

当前文章链接:

凡来源标注“考而思”均为考而思原创文章,版权均属考而思教育所有,任何媒体、网站或个人不得转载,否则追究法律责任

犹豫不决 不如直接对话导师

没找到想看的信息?直接联系老师咨询

3000+硕博导师库匹配,免费咨询

微信号: kaoersi02

免费获得学习规划方案

已有 2563 位留学生获得学习规划方案

马上领取规划

*已对您的信息加密,保障信息安全。